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Abstract

The problem of deciding whether two pixels in an image
have the same real world color is a fundamental problem
in computer vision. Many color spaces are used in different
applications for discriminating color from intensity to cre-
ate an informative representation of color. The major draw-
back of all of these representations is that they assume no
color distortion. In practice the colors of real world images
are distorted both in the scene itself and in the image cap-
turing process. In this work we introduce Color Lines, an
image specific color representation that is robust to color
distortion and provides a compact and useful representa-
tion of the colors in a scene.

Figure 1: An RGB histogram.

1. Introduction
Color representation is a fundamental problem in computer
vision. Many applications depend on a good color repre-
sentation in order to perform well. Although most color
images are captured in RGB, this color space is rarely used
for computer vision tasks. The main reason is that RGB
does not separate color from intensity which results in
highly correlated channels.

Computer vision is mainly about retrieving information
from images. Color is one of the basic information cues in
images, but extracting information from the RGB values is
not a trivial problem. We would like to separate the RGB
information of each image’s pixel into surface color, illumi-
nation color and intensity, noise etc. Unfortunately, this task
is usually impossible to achieve. Another problem with the
RGB coordinate system is that it does not provide an intu-
itive distance metric - the distance in RGB coordinates is not
proportional to the color difference. A good color represen-
tation should also allow us to have better compression (sim-
ilar pixels will have similar values), to reduce noise more
efficiently and to achieve better image understanding.
Most color models assume that real world colors form linear
color clusters that intersect the origin in the RGB histogram
domain. This assumption is based on the fact that for lam-
bertian objects, the emitted surface color is a multiplication
of the surface albedo with the illumination. According to
this assumption the R/G/B ratio of pixels having the same
albedo color will be identical. Figure 1 shows the histogram
of a real image and clearly illustrates that the color clusters
do not form straight lines.
In this work we create an image-specific color model that
is aimed at helping in providing a robust method for decid-
ing whether two pixels share the same real world color or
not and creating a better distance metric for the colors of an
image.

Color Models Many color spaces have been suggested to
separate color from intensity and create a method for decid-
ing whether two pixels share the same color or not. These
color spaces can be divided into two groups Linear and
Non-Linear ones.
Among the linear ones, the most widely used are the YCrCb,
YUV and YIQ. Among the non-linear ones, two groups are
very popular [3]. The HSV HSI, HSB, HSL, ... color spaces
separate the color into Hue - Color, Saturation - color satu-
ration (purity) and Value - the intensity. The other group is
the CIE-LAB and CIE-LUV color spaces that separate color
into luminance and two color coordinates in an effort to cre-
ate a color space which is perceptually uniform [2].
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Previous works have suggested application specific color
models, for example the I1I2I3 color model proposed in [8]
for image segmentation. These works do not try to exploit
image specific attributes.
Throughout the paper, we refer to all these models as
Generic Models, as they depend only on the RGB values
of a single pixel.
A major drawback of all the generic color models is that
they are all obtained through a fixed transformation from
RGB without considering specific image properties.

Motivation To decide whether two pixels have the same
real world color or not, we use the color coordinates of
a generic color model. As explained above, these color
models assume either there is no color distortion or there
is an identical color distortion for all imaging conditions.
In practice, when dealing with real world images of an
unknown source, this assumption is rarely true as scene
surface color is distorted differently in different images,
depending on the scene and camera settings.
Figure 1 shows the histogram of 5 color patches. Although
the color clusters are very obvious, it is clear they do not
form straight lines that intersect the origin. As will be
shown later on, there are many phenomena that occur in the
scene itself as well as during the image capturing process,
which distort color and cause pixels with the same real
world color to have different color coordinates (or R/G/B
ratios).
In spite of the color distortion, when looking at the RGB
histogram of real world images, two important facts can
clearly be observed; The histogram is very sparse, and it is
structured. We used the Berkeley Segmentation Dataset [1]
to provide statistics of histogram sparseness. The average
number of non empty histogram bins for all 200 training
images of the dataset is 0.22%. Not only the number of
non empty histogram bins is very small, they are not ho-
mogeneously distributed in the RGB space and most pixels
are contained in very small regions of the histogram space.
90% of the non-empty histogram bins have non-empty
neighboring bins. This is because the colors of almost any
given scene create very specific structures in the histogram.

Our Color Lines model exploit these two properties
of color histograms by describing the elongated color
clusters. By doing so, Color Lines create an image specific
color representation that has two important properties:
Robustness to color distortion and a compact description of
colors in an image.

The following section discusses various reasons for color
distortion in natural images. We then present our color lines
model and provide an efficient algorithm for approximating
the optimal Color Lines description of an image. Section 4

shows some experimental results. We suggest some possible
uses of our model in Section 5. Section 6 summarizes our
work.

2. Color Distortion
The colors of most natural images undergo a few types of
distortion. In images taken using digital cameras, these phe-
nomena can be divided into three groups (The color distor-
tion of film-based cameras is similar):

1. Scene related color distortion.

2. Sensor related color distortion.

3. Other camera related color distortion.

Scene related color distortion Some of the deviation
from the linear model is within the scene itself. Specular-
ity, that has been described using the T-shape (or L-shape)
model in [7], and inter reflection are two very important
phenomena that result in non linear color clusters. Figure
2 shows the histogram of a specular object. Another exam-
ple for a phenomenon that yields non linear color clusters,
is the color of the sky. Figure 3 shows a typical sky color
histogram.

Sensor related color distortion Sensor-related color dis-
tortion includes sensor saturation and cut off. Above a cer-
tain threshold the camera sensors reach saturation and pro-
duce a constant response, whereas below another threshold
the sensor enters it’s cut-off zone where it generates no re-
sponse at all. Figure 4 shows the histogram of a saturated
scene.

Other camera related color distortion Besides sensor-
related distortion most digital cameras have other kinds of
color distortion. These are usually referred to as gamma cor-
rection although in practice it is usually not a classic gamma
correction, rather a more complicated color manipulation
that attempts to extend the camera’s dynamic range and en-
rich the color, providing images that are visually pleasing.
Color manipulations performed by different cameras vary
between different manufacturers and different models. An
extensive survey on the subject can be found in [6]. Figure
5 shows two histograms of the same image. The image was
taken with a camera that can save the image as raw data.
Figure (a) shows the histogram of the raw image data, fig-
ure (b) shows the histogram of the processed image the user
receives.
Another distortion from the linear color assumption is
caused by blurring. Along edges and blurred regions each
pixel might combine color information from different ob-
jects or regions resulting in non linear color clusters.
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(a) (b)

Figure 2: A specular object (a) and it’s histogram (b).

(a) (b)

Figure 3: Sky color usually gradually varies gradually from blue to
white/gray and does not form a linear color cluster in the RGB color space.
in (a) we have an image of a plane in the sky (from the Berkeley segmen-
tation database) it’s histogram is in (b).

(a) (b)

Figure 4: A saturated image (a) and it’s histogram (b).

Due to the above reasons, color clusters in real world im-
ages can’t be represented using merely two color coordi-
nates (or a color line through the origin) as is usually the
case when using a generic color space. Instead, a higher di-
mensional representation should be used. In this paper we
suggest modelling color in an image-specific way that will
be as immune as possible to color distortion, yet simple and
easy to construct.

3. Color Lines
The previous section presented various color distortions that
are found in natural images. Recovering a model that pro-

(a) (b)

(c) (d)

Figure 5: Figures (a) and (c) show the same image, in (a) we see the raw
image data and in (c) the output image to the user after color manipulation
done inside the camera. Figures (b) and (d) shows the histograms of the
above images. In figure (a) part of the image pixels are saturated while in
figure (b) they are not, this is due to the fact that the actual bit depth of the
camera is larger than 8 therefore, without manipulating color, values larger
than 256 are clamped.

vides a full explanation for the color of each pixel is a diffi-
cult (probably impossible) problem. Our goal is to produce
a simple model of image color that will be robust to color
distortion and will allow us to decide whether any 2 pixels
share the same real world color or not.
To achieve this goal we use Color Lines. The Color Lines
model of an image is a list of lines representing the image’s
colors along with a metric for calculating the distance be-
tween every pixel and each Color Line. Each Color Line
represent an elongated cluster in the RGB histogram. In our
implementation the Color Line is defined by a set of RGB
points along it’s skeleton and a 2D gaussian neighborhood
for each point in the plane that is perpendicular to the line
(the cluster’s are non-isotropic around their skeleton). Fig-
ure 6 shows two color lines. The green one is shown with
2D gaussians around each point.
The average number of color lines of an image is 40, on
an average, each color line is defined by 6 color points (and
their 2D gaussian neighborhoods), hence the size of an aver-
age model is about 1440 parameters (Our model uses about
240 color points. Each point is represented by 6 parameters:
3 for the location and 3 are the 2D gaussian parameters).

By using this very general model, the only assumptions we
make about color behavior is that the norm of the RGB color
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Figure 6: Two color lines, the green one is drawn with the 2D gaussians
around each color point.

coordinates of a given real world color will increase with an
increase of the illumination and that the change in the R/G/B
ratio will be smooth.
Searching the RGB color space for the optimal elongated
clusters is a difficult problem. Several phenomena that make
this search so difficult are the noise and quantization in the
histogram domain, edges and reflections that make the sep-
aration of color clusters difficult and the fact that many im-
ages tend to be very “grayish”, which again makes the sep-
aration of the color clusters harder. In spite of the above
problems, we are able to use natural image properties in or-
der to make this search feasible. One property that can be
used in order to simplify our search, is the fact that we are
actually not looking for a general line in the histogram 3D
space, rather we have strong knowledge of the line’s orien-
tation.

3.1. Computing Color Lines
We present a simple and efficient algorithm in order to re-
cover the color clusters. The algorithm outline is shown in
Algorithm 1.

Algorithm 1 Computing Color Lines

1. Construct histogram slices.

2. foreach slice

- Locate local maxima points.

- Define a region for each such maxima point.

3. Concatenate nearby maxima points from neighboring
slices into color lines.

Constructing the histogram slices is done by slicing the
RGB histogram using hemispheres of equal distance radii

centered at the origin. Each histogram slice is the summa-
tion of all histogram points between two successive hemi-
spheres. Slice i is therefore a 2D histogram of all image
points with their RGB norm between Ni and Ni+1, where N
is a vector of equal distanced norms. Figure 7 demonstrates
the construction of the histogram slices. Assuming that the
color clusters are roughly perpendicular to the hemispheres,
we get local maxima in the histogram slices wherever an
elongated color cluster intersects the slice. We smooth the
histogram slices using anisotropic diffusion and then we
find the local maxima points (we simply find points that are
larger then their neighbors). We then merge nearby local
maxima points according to their distance and a separation
measurement (the depth of the valley connecting them). For
each maxima point we fit a gaussian. These gaussians are
used for pixel classification. Although the shape of the 2D
color cluster in the histogram slice can be general, in prac-
tice it is usually ellipsoid and modelling it using a gaus-
sian yields good results. Using gaussians also helps in in-
troducing a probabilistic framework for color classification
that can be later used for segmentation purposes. We finally
combine nearby local maxima from neighboring slices to
form color lines.
The algorithm is very robust and almost doesn’t require any
threshold tuning. Changing the threshold creates a tradeoff
between the number of color lines found and the mean dis-
tance between actual pixel color and the color lines. The
parameters we use are: histogram slices smoothing, a pa-
rameter that controls the merging of nearby local maxima
points, and a parameter for deciding whether two maxima
points from nearby slices belong to the same color line. Al-
though there are algorithms in the literature that are aimed
on finding general elongated clusters [5], we so far achieved
the best results using our heuristic algorithm. We hope to in-
corporate an algorithm with a better theoretical background
for the Color Lines computation in the future.

Figure 7: Histogram slicing.

While this approach does not utilize spatial information,
it makes strong use of our prior knowledge of the world
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and in practice gives good results even for very complicated
scenes. We would like to mention that in fact, considering
the extreme case, when the entire RGB cube is considered
as one slice, this approach would be identical to performing
the segmentation in the 2D Nrgb color space. Nevertheless,
slicing the histogram makes a much better usage of locality
in the histogram domain.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: In figure (a) we see the original image, the histogram is pro-
vided in figure (b), figures (c) & (d) show the classification according to
the HSV color model and the clusters in the HS plane (cluster centers are
marked using triangles), figures (e) & (f) show the classification according
to the CIE-LAB color model and the color clusters in the AB plane, figures
(g) & (h) show the classification according to the Color Lines model and
the color lines found.

4. Results
In order to demonstrate how well the image specific Color
Lines model represents color compared to the HSV and
CIE-LAB generic color models we begin by presenting a
case study. We took an image of color stripes and manu-
ally segmented it into its color components. For each color
component we built a color cluster representation in each
of the color models: a color line in the case of our model
and a 2D color point in the case of the HSV and CIE-LAB
color models. We finally assigned each pixel of the origi-
nal image to the nearest color cluster representation. For the
HSV and CIE-LAB color spaces we used the 2D euclidean
distance between the pixel’s color and the cluster represen-
tation. For the Color Lines model, we used 3D euclidean
distance between the pixel’s RGB coordinates and the color
line. This is in fact a slightly weaker version of our Color
Lines model, since in our model we assume the color cluster
is non-isotropic around the color line and use 2D gaussians
around the color points for pixels classification. However,
for fair comparison with the HSV and CIE-LAB color mod-
els we used the Euclidean distance metric. The results can
be seen in figure 8

We used the Berkeley image segmentation dataset and
the Corel image dataset to evaluate our color model. It is
clear from our results that the histogram of a natural image
can be described well using a small set of color lines. Figure
9 shows the distance histogram between the original pixels’
colors and the color line best describing the pixel. The mean
distance is 5 gray (or color) levels. We should mention that
the color information in many of the images in the dataset
is very poor due to an aggressive JPEG compression, nev-
ertheless, for the large majority of images, our algorithm
perform very well.

Figure 9: Distances histogram.

In the Corel dataset, images are divided into folders
based on categories. In our version each category’s folder
contains 20 images. We recovered color lines for 30 dif-
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folder number of lines mean error
africa 34.8 2.23
agricltr 33.3 2.49
animals 32.1 2.61
architct 30.7 2.25
birds 36.0 2.34
boats 28.4 2.45
buisness 35.0 2.19
cars 42.5 1.97
children 50.6 2.37
cityscpe 30.0 2.36
coasts 28.8 2.45
color 83.3 2.63
design 34.0 2.40
flowers 52.3 2.40
food 59.2 2.54
industry 40.9 2.28
insects 51.5 2.00
landscpe 27.2 2.51
leisure 48.4 2.67
mideast 36.1 2.75
mountain 24.5 2.25
patterns 21.9 2.40
people 55.6 2.40
pets 39.6 2.16
portrait 39.9 1.98
seasons 42.5 2.75
sports 49.4 2.19
sunsets 35.5 2.06
textures 19.4 2.57
tourism 41.7 2.67
AVG. 39.5 2.38

Table 1: Corel Data Set Color Lines statistics.

ferent categories. The results are presented in a table and
shown in Figure 1. For each category we provide the aver-
age number of lines found and the average reconstruction
error. It is possible to see that both the average number of
color lines and the mean reconstruction error is affected by
the type of image. Landscape images can be usually de-
scribed accurately using a small set of color lines, while
highly detailed ones require a larger number of lines. Ironi-
cally, our algorithm did worst for the “color” folder, but this
is not surprising, since most images there are either syn-
thetic or contain a large amount of reflections. Figure 10
shows an example of a simple image and a complicated one,
two more examples are shown in Figure 14. Many more ex-
amples are found in the CD

5. Applications

Using the Color Lines representation has advantages over
generic color models for several applications. In this section
we outline the use of Color Lines for a few applications. We
did not implement complicated, state of the art systems, and
in all our examples we only use color information (and no
spatial information, texture or edges).

(a) (b)

(c) (d)

(e) (f)

Figure 10: (a) is a simple image, it’s color lines model (30 color lines) is
shown in (c), and the pixels classification is shown in (e). (b) is a compli-
cated scene with a lot of specularity and reflectance, it’s color lines model
is shown in (d) (92 lines found) and (f) shows the pixels classification

Segmentation Integrating the color lines model into a
segmentation application is very straight forward. The
Color Lines provides us with a set of the dominant colors
in the image and the probability of assigning every pixel to
each of the color clusters. Assigning pixels to their closest
color lines by itself can’t provide good segmentation since
it does not use any spatial information or other important
features like texture. but in many cases, even this simple
approach yields good results as shown in figure 11.

Compression By using Color Lines we create a compact
representation of an image. For each pixel only two val-
ues are stored, an index to it’s color line and a parameter
along the line (or intensity). This representation can be eas-
ily compressed later on.

Color editing Using Color Lines enables us to manipu-
late color very efficiently and in a very intuitive way, as
shown figure 12. We can increase or decrease the color sat-
uration of an object, or even completely replace colors by
applying simple transformation upon the color line of the
object.
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(a) (b)

Figure 11: (a) Original image and (b) the image after assigning the color
of each pixel to the mean color of its color line.

(a) (b)

(c) (d)

(e) (f)

Figure 12: (a) Original image (segmented into 3 color lines). (b) De-
creasing the color saturation. (c) Increasing the color saturation. (d) Shift-
ing the intensities making one object brighter and the others darker. (e)
Stretching the lines. (f) Changing colors.

Saturated color correction Another Color Lines appli-
cation is correcting the color of saturated image pixels. The
dynamic range of a typical natural or artificial scene is usu-
ally larger than the dynamic range that the camera’s sensors
can capture. As a result, in many pictures some of the pixels
have at least one saturated color component (people are of-

ten not sensitive to this). In the histogram domain, this phe-
nomenon appears in the form of a knee in the color cluster’s
line, the line looks as if it has been projected upon the RGB
bounding box. We correct the saturated component by sub-
stituting one of the non saturated color components in the
line equation of the non saturated line segment and retriev-
ing the saturated component. (we can even use one non satu-
rated component to correct the other two). The color correc-
tion results are shown in figures 13. In order to readjust the
dynamic range we use gamma correction or other methods
for high dynamic range compression [4]. Simply rescaling
the color will usually create an image that is significantly
darker than the original image and therefore yields poor re-
sults.

(a) (b)

(c) (d)

Figure 13: (a) Saturated image. (b) Using gamma correction. (c) Cor-
recting saturated pixels and rescaling the colors. (d) Correcting saturated
pixels and using gamma correction. It is possible to see that in figures (c)
and (d) the saturated (yellowish) pixels in the left part of Pinocchio are
corrected but the intensity range has increased from 255 to 305 and the im-
age in (c) is too dark. The intensity in image (d) has been corrected using
gamma correction.

6. Summary
We presented a new approach of modeling color in an
image specific way. We have shown the advantages of this
approach over existing color modelling methods that are
generic and do not take into account color manipulation
and distortion in the scene and in the image capturing
process. Our approach doesn’t assume any particular color
distortion and only assumes that a region in the scene
having homogeneous color will form a homogeneous
elongated color cluster in the RGB histogram with the
brighter pixels having larger RGB norms. This work is
different from previous works like the T-shape model since
it doesn’t model a single phenomena but the entire color of
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an image and by the fact that it does not assume the shape
of the resulting color clusters. By using Color Lines we
describe the elongated clusters in the RGB histogram and
create a precise and useful color representation.
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(a) (b)

(c) (d)

(e) (f)

Figure 14: The original images are shown in figures (a) and (b). Figures
(c) and (d) show the images after projecting the color of each pixel upon its
color line. In Figures (e) and (f) the pixels are assigned to the mean color of
their color lines. The number of Color Lines found for each of the images
is 23.
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